Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Anal Chim Acta ; 1290: 342218, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38246744

ABSTRACT

BACKGROUND: Lead (Pb) is one of the most toxic heavy-metal pollutants. Additionally, lead ions (Pb2+) can accumulate in the human body through the food chain, causing irreversible damage through organ damage and system disorders. In the past few years, the detection of Pb2+ has mainly relied on instrumental methods such as atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS). Nonetheless, these techniques are complicated in terms of equipment and procedures, along with being time-intensive and expensive in terms of detection. These drawbacks have limited their wide application. Hence, there is a pressing need to develop detection techniques for Pb2+ that are not only cost-efficient but also highly sensitive and specific. RESULTS: A novel "on-off-on" electrochemiluminescence (ECL) sensor for detecting Pb2+ was developed based on the resonance energy transfer (RET) effect between AuNPs and boron nitride quantum dots (BN QDs) and the recognition of Pb2+ by DNAzyme along with the cleavage reaction of the substrate chain. Poly(6-carboxyindole)/stannic sulfide (P6ICA/SnS2) nanocomposite was employed as a co-reaction accelerator to consequently facilitate the production of intermediate SO4•-. This effective enhancement of the reaction led to an improved ECL intensity of BN QDs and enabled the sensor platform to exhibit a higher original ECL response. Benefiting from the combination of the DNAzyme signal amplification strategy with the "on-off-on" design, the ECL sensor showed satisfactory selectivity, good stability, and high sensitivity. This ECL sensor exhibited a linear detection range (LDR) of 10-12-10-5 M and a limit of detection (LOD) of 2.6 × 10-13 M. SIGNIFICANCE: In the present work, an "on-off-on" ECL sensor is constructed based on RET effect for ultrasensitive detection of Pb2+. P6ICA/SnS2 was investigated as the co-reaction accelerator in this sensor. Moreover, this ECL sensor exhibited excellent analytical capability for detecting Pb2+ in actual water samples, providing a method for detecting other heavy metal ions as well.


Subject(s)
DNA, Catalytic , Metal Nanoparticles , Humans , Gold , Lead , RNA Cleavage , Energy Transfer , Ions
2.
ACS Nano ; 18(1): 770-782, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38113242

ABSTRACT

Interleukin-2 (IL-2) used in multiple sclerosis (MS) therapy modulates the balance between regulatory T (Treg) cells and effector T (Teff) cells. However, the off-target activation of Teff cells by IL-2 limits its clinical application. Therefore, a rapidly prepared immunoswitch nanomodulator termed aT-IL2C NPs was developed, which specifically recognized Treg cells with high TIGIT expression thanks to the presence of an anti-TIGIT and an IL-2/JES6-1 complex (IL2C) being delivered to Treg cells but not to Teff cells with low TIGIT expression. Then, IL2C released IL-2 due to the specific expression of the high-affinity IL-2 receptor on Treg cells, thus enabling the active targeting and selective proliferation of Treg cells. Moreover, the anti-TIGIT of aT-IL2C NPs selectively inhibited the proliferation of Teff cells while leaving the proliferation of Treg cells unaffected. In addition, since the IL-2 receptor on Teff cells had medium-affinity, the IL2C hardly released IL-2 to Teff cells, thus enabling the inhibition of Teff cell proliferation. The treatment of experimental autoimmune encephalomyelitis (EAE) mice with aT-IL2C NPs ameliorated the severity of the EAE and restored white matter integrity. Collectively, this work described a potential promising agent for effective MS therapy.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , T-Lymphocytes, Regulatory , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Interleukin-2/pharmacology , Interleukin-2/therapeutic use , Interleukin-2/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Cell Proliferation , Mice, Inbred C57BL
3.
Proc Natl Acad Sci U S A ; 120(42): e2303774120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37816052

ABSTRACT

Although robustly expressed in the disease-free (DF) breast stroma, CD36 is consistently absent from the stroma surrounding invasive breast cancers (IBCs). In this study, we primarily observed CD36 expression in adipocytes and intralobular capillaries within the DF breast. Larger vessels concentrated in interlobular regions lacked CD36 and were instead marked by the expression of CD31. When evaluated in perilesional capillaries surrounding ductal carcinoma in situ, a nonobligate IBC precursor, CD36 loss was more commonly observed in lesions associated with subsequent IBC. Peroxisome proliferator-activated receptor γ (PPARγ) governs the expression of CD36 and genes involved in differentiation, metabolism, angiogenesis, and inflammation. Coincident with CD36 loss, we observed a dramatic suppression of PPARγ and its target genes in capillary endothelial cells (ECs) and pericytes, which typically surround and support the stability of the capillary endothelium. Factors present in conditioned media from malignant cells repressed PPARγ and its target genes not only in cultured ECs and pericytes but also in adipocytes, which require PPARγ for proper differentiation. In addition, we identified a role for PPARγ in opposing the transition of pericytes toward a tumor-supportive myofibroblast phenotype. In mouse xenograft models, early intervention with rosiglitazone, a PPARγ agonist, demonstrated significant antitumor effects; however, following the development of a palpable tumor, the antitumor effects of rosiglitazone were negated by the repression of PPARγ in the mouse stroma. In summary, PPARγ activity in healthy tissues places several stromal cell types in an antitumorigenic state, directly inhibiting EC proliferation, maintaining adipocyte differentiation, and suppressing the transition of pericytes into tumor-supportive myofibroblasts.


Subject(s)
Breast Neoplasms , Animals , Female , Humans , Mice , Adipocytes/metabolism , Breast Neoplasms/pathology , Endothelial Cells/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Rosiglitazone/pharmacology
4.
Angew Chem Int Ed Engl ; 62(35): e202305186, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37157011

ABSTRACT

Ultra-low molecular weight (ULMW) CO2 -polyols with well-defined hydroxyl end groups represent useful soft segments for the preparation of high-performance polyurethane foams. However, owing to the poor proton tolerance of catalysts towards CO2 /epoxide telomerization, it remains challenging to synthesize ULMW yet colorless CO2 -polyols. Herein, we propose an immobilization strategy of constructing supported catalysts by chemical anchoring of aluminum porphyrin on Merrifield resin. The resulting supported catalyst displays both extremely high proton tolerance (≈8000 times the equivalents of metal centers) and independence of cocatalyst, affording CO2 -polyols with ULMW (580 g mol-1 ) and high polymer selectivity (>99 %). Moreover, the ULMW CO2 -polyols with various architectures (tri-, quadra-, and hexa-arm) can be obtained, suggesting the wide proton universality of supported catalysts. Notably, benefiting from the heterogeneous nature of the supported catalyst, colorless products can be facilely achieved by simple filtration. The present strategy provides a platform for the synthesis of colorless ULMW polyols derived from not only CO2 /epoxides, but also lactone, anhydrides etc. or their combinations.

5.
Angew Chem Int Ed Engl ; 62(26): e202303237, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37186410

ABSTRACT

Exploiting non-covalent interactions to catalyze challenging ionic polymerizations is an ambitious goal but is in its infancy. We recently demonstrated non-covalent anion-binding catalysis as an effective methodology to enable living cationic polymerization (LCP) of vinyl ethers in an environmentally benign manner. Here, we further elucidate the structure-reactivity relationships of the elaborately designed seleno-cyclodiphosph(V)azanes catalysts and the roles of anion-binding interactions by a combined theoretical DFT study and experimental study. The investigation suggests that the distinct cis-cyclodiphosph(V)azane framework combined with "selenium effect" and electron-withdrawing 3,5-(CF3 )2 -Phenyl substitution pattern in catalyst enables a critical contribution to accessing excellent stability, anion affinity and solubility under polymerization conditions. Thus, the catalyst could leverage anion-binding interactions to precisely control reversible and transient dormant-active species equilibrium, allowing it to dynamically bind, recognize and pre-organize propagating ionic species and monomer, thereby facilitating efficient chain propagation and minimizing irreversible chain transfer events under mild conditions. The more in-depth understanding of the mechanism for anion-binding catalytic LCP reported herein should help to guide future catalyst design and to extend this concept to broader polymerization systems where ionic species serve as crucial intermediates.


Subject(s)
Polymerization , Cations , Catalysis
6.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37108264

ABSTRACT

The AP2/ERF transcription factor family is one of the most important gene families in plants and plays a vital role in plant abiotic stress responses. Although Erianthus fulvus is very important in the genetic improvement of sugarcane, there are few studies concerning AP2/ERF genes in E. fulvus. Here, we identified 145 AP2/ERF genes in the E. fulvus genome. Phylogenetic analysis classified them into five subfamilies. Evolutionary analysis showed that tandem and segmental duplication contributed to the expansion of the EfAP2/ERF family. Protein interaction analysis showed that twenty-eight EfAP2/ERF proteins and five other proteins had potential interaction relationships. Multiple cis-acting elements present in the EfAP2/ERF promoter were related to abiotic stress response, suggesting that EfAP2/ERF may contribute to adaptation to environmental changes. Transcriptomic and RT-qPCR analyses revealed that EfDREB10, EfDREB11, EfDREB39, EfDREB42, EfDREB44, EfERF43, and EfAP2-13 responded to cold stress, EfDREB5 and EfDREB42 responded to drought stress, and EfDREB5, EfDREB11, EfDREB39, EfERF43, and EfAP2-13 responded to ABA treatment. These results will be helpful for better understanding the molecular features and biological role of the E. fulvus AP2/ERF genes and lay a foundation for further research on the function of EfAP2/ERF genes and the regulatory mechanism of the abiotic stress response.


Subject(s)
Saccharum , Phylogeny , Saccharum/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Transcriptome , Gene Expression Regulation, Plant , Multigene Family
7.
Plant Physiol Biochem ; 199: 107706, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37119548

ABSTRACT

In this study, we characterized a WRKY family member gene, SsWRKY1, which is located in the nucleus and contains multiple stress-related cis-acting elements. In addition, constructed SsWRKY1-overexpressing Arabidopsis thaliana had higher antioxidant enzyme activity and proline content under drought stress conditions, with lower malondialdehyde content and reactive oxygen species (ROS) accumulation, and the expression levels of six stress-related genes were significantly upregulated. This indicates that the overexpression of SsWRKY1 in Arabidopsis thaliana improves resistance to drought stress. SsWRKY1 does not have transcriptional autoactivation activity in yeast cells. The yeast two-hybrid (Y2H) system and the S. spontaneum cDNA library were used to screen 21 potential proteins that interact with SsWRKY1, and the interaction between SsWRKY1 and ATAF2 was verified by GST pull-down assay. In summary, our results indicate that SsWRKY1 plays an important role in the response to drought stress and provide initial insights into the molecular mechanism of SsWRKY1 in response to drought stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Saccharum , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Saccharum/genetics , Drought Resistance , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Droughts , Antioxidants/metabolism , Stress, Physiological/genetics
8.
Angew Chem Int Ed Engl ; 62(24): e202302898, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37058315

ABSTRACT

Chemically recyclable polymers that can depolymerize into their constituent monomers are attractive candidates to replace non-recyclable petroleum-derived plastics. However, the physical properties and mechanical strengths of depolymerizable polymers are commonly insufficient for practical applications. Here we demonstrate that by proper ligand design and modification, aluminum complexes can catalyse stereoretentive ring-opening polymerization of dithiolactone, yielding highly isotactic polythioesters with molar masses up to 45.5 kDa. This material can form crystalline stereocomplex with a Tm of 94.5 °C, and exhibits mechanical performances comparable to petroleum-based low density polyethylene. Exposure of the polythioester to aluminum precatalyst used to synthesized it resulted in depolymerization to pristine chiral dithiolactone. Experimental and computational studies suggest that aluminum complexes have appropriate binding affinity with sulfide propagating species, thereby avoiding catalyst poisoning and minimizing epimerization reactions, which has not been accessible using other metal catalysts. Overall, aluminum catalysis provides access to performance-advantaged stereoregular recyclable plastics as a promising alternative to petrochemical plastics, thus incentivizing improved plastic sustainability.

9.
Plant Commun ; 4(4): 100562, 2023 07 10.
Article in English | MEDLINE | ID: mdl-36814384

ABSTRACT

Erianthus produces substantial biomass, exhibits a good Brix value, and shows wide environmental adaptability, making it a potential biofuel plant. In contrast to closely related sorghum and sugarcane, Erianthus can grow in degraded soils, thus releasing pressure on agricultural lands used for biofuel production. However, the lack of genomic resources for Erianthus hinders its genetic improvement, thus limiting its potential for biofuel production. In the present study, we generated a chromosome-scale reference genome for Erianthus fulvus Nees. The genome size estimated by flow cytometry was 937 Mb, and the assembled genome size was 902 Mb, covering 96.26% of the estimated genome size. A total of 35 065 protein-coding genes were predicted, and 67.89% of the genome was found to be repetitive. A recent whole-genome duplication occurred approximately 74.10 million years ago in the E. fulvus genome. Phylogenetic analysis showed that E. fulvus is evolutionarily closer to S. spontaneum and diverged after S. bicolor. Three of the 10 chromosomes of E. fulvus formed through rearrangements of ancestral chromosomes. Phylogenetic reconstruction of the Saccharum complex revealed a polyphyletic origin of the complex and a sister relationship of E. fulvus with Saccharum sp., excluding S. arundinaceum. On the basis of the four amino acid residues that provide substrate specificity, the E. fulvus SWEET proteins were classified as mono- and disaccharide sugar transporters. Ortho-QTL genes identified for 10 biofuel-related traits may aid in the rapid screening of E. fulvus populations to enhance breeding programs for improved biofuel production. The results of this study provide valuable insights for breeding programs aimed at improving biofuel production in E. fulvus and enhancing sugarcane introgression programs.


Subject(s)
Saccharum , Saccharum/genetics , Biofuels , Phylogeny , Chromosomes, Plant/genetics , Plant Breeding
10.
J Am Chem Soc ; 145(3): 1877-1885, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36594572

ABSTRACT

The current scale of plastics production and the attendant waste disposal issues represent an underexplored opportunity for chemically recyclable polymers. Typical recyclable polymers are subject to the trade-off between the monomer's polymerizability and the polymer's depolymerizability as well as insufficient performance for practical applications. Herein, we demonstrate that a single atom oxygen-by-sulfur substitution of relatively highly strained dilactone is an effective and robust strategy for converting the "non-recyclable" polyester into a chemically recyclable polymer by lowering the ring strain energy in the monomer (from 16.0 kcal mol-1 in dilactone to 9.1 kcal mol-1 in monothiodilactone). These monothio-modification monomers enable both high/selective polymerizability and recyclability, otherwise conflicting features in a typical monomer, as evidenced by regioselective ring-opening, minimal transthioesterifications, and quantitative recovery of the pristine monomer. Computational and experimental studies demonstrate that an n→π* interaction between the adjacent ester and thioester in the polymer backbone has been implicated in the high selectivity for propagation over transthioesterification. The resulting polymer demonstrates high performance with its mechanical properties being comparable to some commodity polyolefins. Thio-modification is a powerful strategy for enabling conversion of six-membered dilactones into chemically recyclable and tough thermoplastics that exhibit promise as next-generation sustainable polymers.

11.
Proteomics ; 23(7-8): e2200021, 2023 04.
Article in English | MEDLINE | ID: mdl-36228107

ABSTRACT

Early events associated with chronic inflammation and cancer involve significant remodeling of the extracellular matrix (ECM), which greatly affects its composition and functional properties. Using lung squamous cell carcinoma (LSCC), a chronic inflammation-associated cancer (CIAC), we optimized a robust proteomic pipeline to discover potential biomarker signatures and protein changes specifically in the stroma. We combined ECM enrichment from fresh human tissues, data-independent acquisition (DIA) strategies, and stringent statistical processing to analyze "Tumor" and matched adjacent histologically normal ("Matched Normal") tissues from patients with LSCC. Overall, 1802 protein groups were quantified with at least two unique peptides, and 56% of those proteins were annotated as "extracellular." Confirming dramatic ECM remodeling during CIAC progression, 529 proteins were significantly altered in the "Tumor" compared to "Matched Normal" tissues. The signature was typified by a coordinated loss of basement membrane proteins and small leucine-rich proteins. The dramatic increase in the stromal levels of SERPINH1/heat shock protein 47, that was discovered using our ECM proteomic pipeline, was validated by immunohistochemistry (IHC) of "Tumor" and "Matched Normal" tissues, obtained from an independent cohort of LSCC patients. This integrated workflow provided novel insights into ECM remodeling during CIAC progression, and identified potential biomarker signatures and future therapeutic targets.


Subject(s)
Carcinoma, Squamous Cell , Proteomics , Humans , Extracellular Matrix/metabolism , Lung/metabolism , Carcinoma, Squamous Cell/pathology , Inflammation/metabolism , Extracellular Matrix Proteins/metabolism
12.
J Am Chem Soc ; 144(51): 23622-23632, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36533423

ABSTRACT

The chemistry of α-amino acid N-carboxyanhydrides (NCAs) has a history of over 100 years, but precise and efficient ring-opening polymerization methods for NCAs remain highly needed to facilitate the studies of polypeptides─that is, mimics of natural proteins─in various disciplines. Moreover, the universally accepted NCA polymerization mechanisms are largely limited to the "amine" and the "activated monomer" mechanisms, and the anionic ring-opening polymerization of NCAs has so far not been invoked. Herein, we show an unprecedented anion-binding catalytic system combining tripodal tri-thiourea with sodium thiophenolate that enables the fast and selective anionic ring-opening polymerization of NCAs. This method leads to the precision construction of various polypeptides with living polymerization behavior and is evidenced by narrow molecular weight distributions (Mw/Mn < 1.2), chain extension experiments, and minimal "activated monomer" pathway. Calculations and experimental results elucidate a living anionic polymerization mechanism, and high selectivities for monomer propagation relative to other deleterious side reactions, such as the "activated monomer" pathway, are attributed to the enhanced stabilization of the propagating carbamate anion, which is enforced by an intramolecular hydrogen bond within the tri-thiourea structure.


Subject(s)
Anhydrides , Thiourea , Polymerization , Anhydrides/chemistry , Peptides/chemistry , Amines/chemistry
13.
Viruses ; 14(11)2022 11 18.
Article in English | MEDLINE | ID: mdl-36423161

ABSTRACT

Alternaria fungus can cause notable diseases in cereals, ornamental plants, vegetables, and fruits around the world. To date, an increasing number of mycoviruses have been accurately and successfully identified in this fungus. In this study, we discovered mycoviruses from 78 strains in 6 species of the genus Alternaria, which were collected from 10 pear production areas using high-throughput sequencing technology. Using the total RNA-seq, we detected the RNA-dependent RNA polymerase of 19 potential viruses and the coat protein of two potential viruses. We successfully confirmed these viruses using reverse transcription polymerase chain reaction with RNA as the template. We identified 12 mycoviruses that were positive-sense single-stranded RNA (+ssRNA) viruses, 5 double-strand RNA (dsRNA) viruses, and 4 negative single-stranded RNA (-ssRNA) viruses. In these viruses, five +ssRNA and four -ssRNA viruses were novel mycoviruses classified into diverse the families Botourmiaviridae, Deltaflexivirus, Mymonaviridea, and Discoviridae. We identified a novel -ssRNA mycovirus isolated from an A. tenuissima strain HB-15 as Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2). Additionally, we characterized a novel +ssRNA mycovirus isolated from an A. tenuissima strain SC-8 as Alternaria tenuissima deltaflexivirus 1 (AtDFV1). According to phylogenetic and sequence analyses, we determined that AtNSRV2 was related to the viruses of the genus Sclerotimonavirus in the family Mymonaviridae. We also found that AtDFV1 was related to the virus family Deltaflexivirus. This study is the first to use total RNA sequencing to characterize viruses in Alternaria spp. These results expand the number of Alternaria viruses and demonstrate the diversity of these mycoviruses.


Subject(s)
Fungal Viruses , RNA Viruses , Alternaria/genetics , Phylogeny , Genome, Viral , RNA, Viral/genetics
14.
Database (Oxford) ; 20222022 08 31.
Article in English | MEDLINE | ID: mdl-36043401

ABSTRACT

Erianthus fulvus (TaxID: 154759) is a valuable germplasm resource in sugarcane breeding and research and has excellent agronomic traits, such as drought resistance, cold resistance, barren tolerance and high brix. With a stable chromosome number (2n = 20) and a small genome (0.9 Gb), it is an ideal candidate for research on sugarcane. Next-generation sequencing technology has enabled a growing number of studies to focus on genomics. Due to the large amount of omics data available, a centralized platform is necessary for ensuring the consistency, independence and maintainability of these large-scale datasets through storage, analysis and integration. Here, we present a comprehensive database for the E. fulvus genome, EfGD. By using the new high-quality reference genome and its annotations, the EfGD provides the largest whole-genome sequencing reference dataset for E. fulvus, which archives 27 165 protein-coding genes and 55 564 488 SNPs from 202 newly resequenced genomes. Furthermore, we created a user-friendly graphical interface for visualizing genomic diversity, population structure and evolution and provided other tools on an open platform. Database URL: https://efgenome.ynau.edu.cn.


Subject(s)
Saccharum , Genome , Genomics , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Saccharum/genetics
15.
Angew Chem Int Ed Engl ; 61(36): e202208525, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35836096

ABSTRACT

Ring-opening copolymerizations have emerged as a powerful approach towards the creation of sustainable polymers. Typical H-bonding catalysts for ring-opening are subject to a single catalytic site. Here we describe a H-bond-donor/Lewis-acidic-boron organocatalyst featuring two distinct catalytic sites in one molecule. The ring-opening copolymerization of epoxides with anhydride mediated by these modular, and tunable catalysts achieves high selectivity (>99 % polyester selectivity) and markedly higher activity compared to either of the di-thiourea analogues or any combinations of them. Calculations and experimental studies reveal that the superior catalytic performance arises from tug-of-war between two differentiated catalytic sites: thiourea pulls off the propagating chain-end from boron center, simultaneously enhancing the role of monomer activation and also nucleophilicity of the propagation intermediates.

16.
ACS Macro Lett ; 11(7): 941-947, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35815849

ABSTRACT

A two-in-one strategy for the photothermal ring-opening copolymerization (PROCOP) of carbon dioxide (CO2) and epoxides was developed by using visible light as an external stimulus. This strategy bridges two processes involving light-to-heat conversion and the alternating copolymerization of CO2 and epoxides. As a proof-of-concept, aluminum porphyrin complexes were explored as photothermal catalysts to afford the copolymerization of CO2/epoxides under a 635 nm laser irradiation. We demonstrated photothermally enhanced polymerization activity, in which the polymerization initiated by the photothermal effect showed a much higher turnover frequency than in the thermal system. Moreover, the PROCOP demonstrated a spatial-temporal control by a light on/off switch. This study provides a fascinating photothermal strategy not only for the CO2/epoxides copolymerization but also for the ring-opening (co)polymerization of other cyclic monomers.

17.
ACS Macro Lett ; 11(1): 46-52, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35574805

ABSTRACT

Functional polymers of nylon-6, particularly those with sustained antibacterial functions, have many practical applications. However, the development of functional ε-caprolactam monomers for the subsequent ring-opening copolymerization (ROCOP) formation of these materials remains a challenge. Here we report a t-BuP4-mediated ROCOP of dimethyl-protected cyclic lysine with ε-caprolactam, followed by quaternization, affording antibacterial nylon-6 polymers bearing quaternary ammonium functionality with high molecular weight (up to 77.4 kDa). The antibacterial nylon-6 polymers exhibited good physical and mechanical properties and strong antimicrobial activities. At 25 mol % quaternary ammonium group incorporation, the nylon-6 polymer demonstrated complete killing of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). The results from this study may provide a strategy for the facile preparation of antibacterial nylon-6 polymers to addressing the public health and safety challenges.


Subject(s)
Ammonium Compounds , Caprolactam , Anti-Bacterial Agents/pharmacology , Caprolactam/analogs & derivatives , Caprolactam/pharmacology , Escherichia coli , Lysine/pharmacology , Polymers/pharmacology
18.
Angew Chem Int Ed Engl ; 61(15): e202115465, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35107197

ABSTRACT

One-pot production of sequence-controlled block copolymer from mixed monomers is a crucial but rarely reached goal. Using a switchable Lewis-pair organocatalyst, we have accomplished sequence-selective polymerization from a mixture of O-carboxyanhydride (OCA) and epoxide. Polymerization of the OCA monomer occurs first and exclusively because of its exceedingly high polymerizability. When OCA is fully consumed, alternating copolymerization of epoxide and CO2 liberated in OCA polymerization is triggered from the termini of the first block. The two polymerizations thus occur in tandem, both in chemoselective fashion, so that a sequence-controlled block polymer with up to 99 % CO2 conversion is furnished in this one-pot protocol. Calculations and experimental results demonstrate a chemoselective and cooperative mechanism, where the high polymerizability of the OCA monomers guarantees exquisite sequence selectivity and the cooperative decarboxylation partly arose from the stabilization effect by triethylborane, which facilitates the smooth transformation of the chain end from carbonate to alkoxide.


Subject(s)
Carbon Dioxide , Polymers , Epoxy Compounds , Polymerization
19.
Angew Chem Int Ed Engl ; 61(9): e202112439, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34981638

ABSTRACT

Absolute control over polymer stereo- and sequence structure is highly challenging in polymer chemistry. Here, an acid-orthogonal deprotection strategy is proposed for the iterative synthesis of a family of unimolecular polymers starting with enantiopure serines, featuring precise sequence, stereoconfiguration and side-chain functionalities that cannot be achieved using traditional polymerization techniques. Acid-orthogonal deprotections proceed independently of one another by the selection of protecting groups that feature the respective acid-lability. Under p-toluenesulfonic acid, acidolysis of tert-butyloxycarbonyl can proceed exclusively, while low-dosage trifluoroacetic acid and low temperature only trigger the selective and quantitative cleavage of trityl. The pioneering use of this acid-orthogonal deprotection chemistry increases the compatibility with otherwise sensitive groups and opens up pathways to facilely introduce structural and functional diversity into stereo- and sequence-defined polymers, thus imparting their unique properties beyond natural biopolymers.

20.
Angew Chem Int Ed Engl ; 61(5): e202113152, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34905260

ABSTRACT

The direct ring-opening polymerization (ROP) of propylene carbonate (PC) only affords oligomers with substantial unidentified by-products, which hinders the efficient utilization of PC. Through detailed studies, for the first time, a careful mechanism involving the in situ release of propylene oxide (PO) from PC decarboxylation is proposed. Further, we report a novel strategy of copolymerization of PC/cyclic anhydrides via in situ capture of the formed intermediates. Results show that PC is successfully transformed into polyesters. Especially for the ring-opening alternating copolymerization (ROAC) of PC/phthalic anhydride (PA), a variety of advantages are manifold: i) slow-release of PO ensuring a perfectly alternating structure; ii) quantitative and fast transformation of PC; iii) visualization of polymerization process by a CO2 pressure gauge. Of importance, through tandem polymerizations, PC is fully transformed into polyesters and polycarbonates concurrently, thus achieving PC utilization with a high atom-economy.

SELECTION OF CITATIONS
SEARCH DETAIL
...